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Abstract

We calculate the average of two characteristic polynomials for the real
Ginibre ensemble of asymmetric random matrices, and its chiral counterpart.
Considered as quadratic forms they determine a skew-symmetric kernel from
which all complex eigenvalue correlations can be derived. Our results are
obtained in a very simple fashion without going to an eigenvalue representation,
and are completely new in the chiral case. They hold for Gaussian ensembles
which are partly symmetric, with kernels given in terms of Hermite and
Laguerre polynomials respectively, depending on an asymmetry parameter.
This allows us to interpolate between the maximally asymmetric real Ginibre
and the Gaussian orthogonal ensemble, as well as their chiral counterparts.

PACS numbers: 02.10.Yn, 02.50.−r, 05.40.−a

1. Introduction

Random matrix theory is known to enjoy a wide range of applications in the physical sciences
and beyond. This remains true when the eigenvalues of the operator to be described move into
the complex plane. However, the ensemble that is perhaps the most interesting of these, the
real Ginibre ensemble [1] dealing with real-valued asymmetric matrix entries, has turned out
to be the most difficult. Possible applications of these ensembles include neural networks [2],
directed quantum chaos [3], quantum chromodynamics [4], financial markets [5] and quantum
information theory [6].

The mathematical difficulty in solving these ensembles is due to the fact that they allow for
combinations of both real and complex conjugate eigenvalue pairs, with their characteristic
equation having only real entries. Apart from results on the spectral density [3, 7, 8] an
eigenvalue representation [9, 10] was derived as a starting point for studying systematically
higher order eigenvalue correlation functions. Only very recently was their Pfaffian structure
explicitly revealed [11, 12], and the probability pN,k that an N × N matrix has exactly k real
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eigenvalues [11, 13] as well as all correlations for k = 0 were computed [13]. Finally the
complete solution for all real and complex eigenvalue correlations was achieved independently
by three different groups [14–18].

In this paper we will give a very simple derivation for the generating kernel of all complex
eigenvalue correlations in the general so-called elliptic case, dealing with partly symmetric
matrices depending on an asymmetry parameter. We also present new results for the chiral
real Ginibre ensemble as a two-matrix model which has not yet been considered.

In the following section we will explain the relation between the complex eigenvalue
density and characteristic polynomials. After defining the elliptic real Ginibre ensemble and
its new chiral extension we consider their corresponding results in two separate sections 3 and
4. Our conclusions are presented in section 5.

2. The role of characteristic polynomials generating the kernel

We start with the simplest ensemble considered here, the real Ginibre ensemble at maximal
asymmetry. It is just given by a Gaussian measure in the space of real, asymmetric N × N

matrices which is invariant under orthogonal transformations:

dμ(A) ≡
N∏

i,j=1

(
dAij√

2π

)
exp

(
−1

2
A2

ij

)
≡ DA e− 1

2 Tr AAT

. (1)

The eigenvalues λi obey the equation det[λi − A] = 0, and thus are real or occur in complex
conjugate pairs. They enjoy the following ordered joint probability density function (jpdf)
[9, 10]:

dμ(λ1, λ2, . . . , λN) = CN · dλ1, . . . , dλN ·
N∏

i<j

(λi − λj ) ·
N∏
k

f (λk), (2)

with some positive definite weight function f (λk) = f (λ̄k) and a normalization constant CN .
Here the eigenvalues are ordered as follows if they are real: λ1 > λ2 > . . ., if they are complex:
Re λ1 = Re λ2 > Re λ3 = Re λ4 > . . . , Im λ1 = −Im λ2 > 0, Im λ3 = −Im λ4 > 0, . . . , and
similarly if they are mixed (see also [18]).

This implies that the spectral density of complex eigenvalues of the (N + 2)-dimensional
ensemble, which can be obtained by inserting a two-dimensional delta-function in the complex
plane, is proportional to

RC
N+2,1(λ) ∝ i(λ − λ̄)f (λ)2〈det[λ − A] det[λ̄ − A]〉N. (3)

The brackets mean the average over the ensemble (1) with the partition function ZN ≡∫
DA e− 1

2 Tr AAT

. There is an additional contribution to the total spectral density from the real
eigenvalues, which is obtained by inserting a delta-function on the real axis, which we do not
consider here. We are therefore led to consider the following correlation of two characteristic
polynomials of A:3

FN(λ, γ ) ≡ 〈det[λ − A] det[γ − A†]〉N ≡ Kβ=1
N (λ, γ )

λ − γ
with λ �= γ. (4)

It determines the antisymmetric kernel Kβ=1
N (λ, γ ), from which all correlation functions of

complex eigenvalues follow for even N. While the result for odd N is known in the real Ginibre
ensemble [18], very recently a general technique has been proposed for obtaining the odd

3 The Hermitian conjugate is put here merely to stress the analogy to other ensembles discussed below, as for real
matrices det[AT ] = det[A].
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N result from even N by removing an eigenvalue [19]. The kernel in equation (4) has been
derived in [14] using the Edelman result [10] for the density of complex eigenvalues, and
using equation (3). Here we will give an independent derivation which makes clear why the
result is so simple, when the jpdf equation (2) is so complicated.

The relation equation (4) is far more general. Not only does it hold for the other real
Ginibre ensembles to be introduced below, but it also holds for other symmetry classes with
complex eigenvalues having unitary or symplectic invariance. For the quaternionic Ginibre
ensembles at β = 4 an identical relation to equation (4) was shown in [20] to give the skew-
symmetric kernel. In the Ginibre ensembles with unitary symmetry β = 2 the kernel is
symmetric and the following modified, simpler relation is known to hold [21]

〈det[λ − A] det[γ − A†]〉N = Kβ=2
N (λ, γ ). (5)

The argument we just presented above for the real Ginibre ensemble at maximal asymmetry
can easily be translated to the partially symmetric case depending on an asymmetry parameter
τ . Here in the large-N limit the complex eigenvalues lie inside an ellipse with axes ∼(1±τ) [7].
It is known [9] that its jpdf is related to equation (2) by a simple rescaling of the eigenvalues,
and we readily obtain

FN(λ, γ ; τ) ≡ 〈det[λ − (S + vA)] det[γ − (S + vA)T ]〉N ≡ Kβ=1
N (λ, γ ; τ)

λ − γ
, (6)

with

τ ∈ [0, 1], v2 = 1 − τ

1 + τ
. (7)

The average is with respect to the following partition function:

ZN ≡
∫

DS DA exp

[
− 1

2(1 + τ)
Tr(SST + AAT )

]
, (8)

and we consider the eigenvalues of the partly symmetric matrix J = S +vA. Here S and A are
N × N matrices being symmetric and antisymmetric respectively, with a particular choice of
variance. The limiting case τ = 0 brings us back to the ensemble equation (1) while setting
τ = 1 would lead to the Gaussian orthogonal ensemble. However, in that case the eigenvalues
become real and this limit is subtle.

The second ensemble we consider in this paper is the chiral counterpart of the real Ginibre
ensemble. Following [4] and its extension to a two-matrix model [22] we define the following
chiral real Ginibre ensemble (ch) with a particular variance n,

Zch
N ≡

∫
DA DB exp

[
−n

2
Tr(AAT + BBT )

]
. (9)

Again we compute the average of characteristic polynomials to obtain the kernel,

F ch
N (λ, γ ;μ) ≡ 〈det[λ − M] det[γ − MT ]〉N ≡ Kch,β=1

N (λ, γ ;μ)

λ2 − γ 2
, (10)

M ≡
(

0 A + μB

−AT + μBT 0

)
. (11)

Here both A and B are rectangular N × (N + ν) matrices without further symmetry among
the real matrix elements. They are drawn independently from the ensemble (1) extended
to ν � 0. The asymmetry parameter is given here by μ ∈ [0, 1], where μ = 1 denotes
maximal asymmetry, and μ = 0 takes us back to the chiral Gaussian orthogonal ensemble.

3
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In [4] initially a one-matrix model was proposed, replacing B by the identity. Whilst we
expect that in the large-N limit both lead to the same universal result our choice allows for an
eigenvalues basis, as in the corresponding chiral extensions of Ginibre at β = 2 [22] and β = 4
[23], having complex and quaternion real matrix elements, respectively. The ensemble in
equation (9) has not been solved before and we will give a completely new result below,
depending parametrically on ν. For maximal asymmetry it corresponds to class 2P in [24]
for real elements.

The 2N + ν eigenvalues λi of the matrix M defined in equation (11) satisfy

0 = det[λ − M] = λν det[λ2 − (A + μB)(−AT + μBT )]. (12)

It will be shown elsewhere that the jpdf of these eigenvalues is again of the form in equation (2).
From that it follows that the kernel derived from F ch

N (λ, γ ;μ) again determines all correlation
functions of complex eigenvalues.

A peculiarity of the chiral ensemble is the following: the non-zero eigenvalues λ2
i solving

the second equation in (12) are real but not necessarily positive. Thus, the eigenvalues
of M can have both real and purely imaginary eigenvalues as well as complex conjugate
eigenvalue pairs. Moreover, all non-zero eigenvalues come in ± pairs due to the chirality of the
matrix M.

3. Characteristic polynomials for the real Ginibre ensemble

For pedagogical reasons we begin with the maximally asymmetric case equation (4). The
partly symmetric case at τ �= 0 is given as a second example below:

FN(λ, γ ) = 1

ZN

∫
DA e− 1

2 TrAAT

det[λ − A] det[γ − AT ]. (13)

Writing the determinants in terms of two N-dimensional complex Grassmann vectors ηi and
ζi , with i = 1, . . . , N , we obtain

FN(λ, γ ) = 1

ZN

∫
DA

∫
dζ dη exp

[
−1

2
AijA

T
ji − λζ ∗

i ζi − γ η∗
i ηi + ζ ∗

i Aij ζj + η∗
jA

T
jiηi

]

=
∫

dζ dη exp

[
−λζ ∗

i ζi − γ η∗
i ηi +

1

2
(ζ ∗

i ζj + η∗
j ηi)

2

]
, (14)

after integrating out the Gaussian matrix A. Here and in the following we will use summation
conventions over double indices. The last term in the exponent can be written as

1
2 (ζ ∗

i ζj + η∗
j ηi)(ζ

∗
i ζj + η∗

j ηi) = ζ ∗
i ηiζjη

∗
j . (15)

With the help of a complex Hubbard–Stratonovich (HS) transformation we can bilinearize and
integrate out the Grassmann variables:

FN(λ, γ ) = 1

π

∫
d2z

∫
dζ dη exp[−|z|2 − λζ ∗

i ζi − γ η∗
i ηi + zζiη

∗
i + z̄ζ ∗

i ηi]

= 1

π

∫
d2z e−|z|2(λγ + |z|2)N = N !

N∑
n=0

(λγ )n

n!
. (16)

This gives a polynomial with leading power (λγ )N as expected. Thus our first main result
leads to the following antisymmetric kernel:

K1
N(λ, γ ) = (λ − γ )N !

N∑
n=0

(λγ )n

n!
, (17)
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which is enough to derive all complex correlation functions. On setting γ = λ̄ and multiplying
by the weight f (λ)2, Edelman’s complex density [8] in terms of an incomplete exponential
follows. It is remarkable that it only depends on |λ|2 while the jpdf equation (2) is not isotropic.
We note that Edelman derived his result using methods from multivariate statistics, and not
from the jpdf.

We now turn to the partly symmetric case with τ ∈ [0, 1], where we can follow the same
path,

FN(λ, γ ; τ) = 1

ZN

∫
DS DA e− 1

2(1+τ)
Tr(SST +AAT ) det[λ − (S + vA)] det[γ − (S + vA)T ]

= 1

ZN

∫
DS DA

∫
dζ dη exp

[
− 1

2(1 + τ)

(
S2

ij − A2
ij

) − λζ ∗
i ζi − γ η∗

i ηi

+ ζ ∗
i (Sij + vAij )ζj + η∗

i (Sij − vAij )ηj

]
. (18)

After symmetrizing and antisymmetrizing the terms in the last line, e.g. ζ ∗
i Sij ζj = 1

2Sij (ζ
∗
i ζj +

ζ ∗
j ζi), we can complete the squares in Sij and Aij respectively, and integrate them out to obtain

FN(λ, γ ; τ) =
∫

dζ dη exp[−λζ ∗
i ζi − γ η∗

i ηi − c2
−((ζ ∗

i ζi)(ζ
∗
j ζj ) + (η∗

i ηi)(η
∗
j ηj ))

− 2c2
+η

∗
i ζ

∗
i ηj ζj + 2c2

−η∗
i ζiηj ζ

∗
j ]. (19)

Here we have introduced the constants c2
± ≡ 1

2 (1 + τ)(1 ± v2). The quartic terms in the
Grassmann variables can be rewritten using two real HS transformations for the first line of
equation (19), and two complex ones for the second line:

FN(λ, γ ; τ) = 1

π3

∫
dx dy

∫
d2z d2w

∫
dζ dη exp[−x2 − y2 − ζ ∗

j (λ + 2ic−x)ζj

− η∗
j (γ + 2ic−y)ηj − 2|z|2 − 2|w|2 + 2c+(z̄ηj ζj − zη∗

j ζj )

− 2c−(w̄ηj ζ
∗
j + wη∗

j ζj )]

= 1

π3

∫
dx dy

∫
d2z d2w exp[−x2 − y2 − 2|z|2 − 2|w|2]

× [
(λ + 2ic−x)(γ + 2ic−y) + 4c2

+|z|2 + 4c2
−|w|2]N

. (20)

Expanding the last factor twice into binomial series in powers of |z|2 and |w|2 we can apply
the following integral representation of the Hermite polynomials:

(τ

2

) k
2
Hk

(
λ√
2τ

)
= 1√

π

∫
dx e−x2

(λ + i
√

2τx)k, (21)

where using equation (7) we have 2c− = √
2τ . This eliminates the two real integrations.

After integrating out the two remaining complex variables z and w we finally arrive at

FN(λ, γ ; τ) = N !
N∑

l=0

τ l

l∑
k=0

1

k!2k
Hk

(
λ√
2τ

)
Hk

(
γ√
2τ

)
. (22)

As a check this is again a polynomial with leading order (λγ )N . Although our result
equation (22) could be further simplified this form is most useful for obtaining the
antisymmetric kernel by applying the Christoffel–Darboux formula to the inner sum:

K1
N(λ, γ ; τ) = N !

N∑
l=0

1

l!

(τ

2

)l+ 1
2

(
Hl+1

(
γ√
2τ

)
Hl

(
λ√
2τ

)
− (γ ↔ λ)

)
. (23)

5
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This coincides precisely with the kernel of skew-orthogonal Hermite polynomials derived
in [17] via the jpdf, which is much more elaborate. As was shown there independently,
this kernel generates all complex eigenvalue correlation functions of the partly symmetric
ensemble equation (8) for even N, depending parametrically on τ .

A similar kernel given in terms of orthogonal (for β = 2) [25] or skew-orthogonal (for
β = 4) [26] Hermite polynomials is known for the partly symmetric Ginibre ensembles.

4. Characteristic polynomials for the chiral real Ginibre ensemble

In this section we present the calculation only for the partly symmetric case of the chiral
extension of the real Ginibre ensemble, depending on asymmetry parameter μ. The simpler
result at maximal asymmetry with μ = 1 is given at the end of this section,

F ch
N (λ, γ ;μ) = 1

Zch
N

∫
DA DB e− n

2 Tr(AAT +BBT ) det

[
λ −(A + μB)

−(AT − μBT ) λ

]

× det

[
γ −(A − μB)

−(AT + μBT ) γ

]

= 1

Zch
N

∫
DA DB

∫
dη dψ dζ dϕ exp

[
−n

2

(
A2

ia +B2
ia

) − λ(η∗
i ηi +ψ∗

a ψa)

− γ (ζ ∗
i ζi + ϕ∗

aϕa)+η∗
i (Aia + μBia)ψa + ψ∗

a

(
AT

ai − μBT
ai

)
ηi

+ ζ ∗
i (Aia − μBia)ϕa + ϕ∗

a

(
AT

ai + μBT
ai

)
ζi

]
. (24)

Here we have written each determinant of size 2N + ν in terms of two Grassmann vectors,
ηi(ζi) and ψa(ϕa) of size N and N + ν, respectively. Our summation conventions imply for
i = 1, . . . , N , and for a = 1, . . . , N + ν. In addition to μ we have a parameter n for the
variance. After completing the square and integrating out the matrices A and B we obtain

F ch
N (λ, γ ;μ) =

∫
dη dψ dζ dϕ exp

[
−λ(η∗

i ηi + ψ∗
a ψa) − γ (ζ ∗

i ζi + ϕ∗
aϕa)

+
1

2n
(η∗

i ψa − ηiψ
∗
a + ζ ∗

i ϕa − ζiϕ
∗
a )

2 +
μ2

2n
(η∗

i ψa + ηiψ
∗
a − ζ ∗

i ϕa − ζiϕ
∗
a )

2

]
.

(25)

Multiplying out and collecting all nonzero terms we need six new complex integrations to
perform the HS transformations that bilinearize the Grassmann variables. We only give the
result obtained after performing all Grassmann integrations:

F ch
N (λ, γ ;μ) = 1

π6

∫
d2u d2v d2w d2p d2q d2z e−|u|2−|v|2−|w|2−|p|2−|q|2−|z|2

× ((λ − iδ−u)(γ − iδ−v̄) − δ2
+wz + δ2

−pq)N

× ((λ − iδ−ū)(γ − iδ−v) − δ2
+w̄z̄ + δ2

−p̄q̄)N+ν, (26)

where we have used the following abbreviations:

δ2
± ≡ 1

n
(1 ± μ2). (27)

Expanding the factor in the second line of equation (26) as

(λ̂ ˆ̄γ − δ2
+wz + δ2

−pq)N =
N∑

l=0

(
N

l

)
(−δ2

+wz)N−l

l∑
k=0

(
l

k

)
(λ̂ ˆ̄γ )k(δ2

−pq)l−k, (28)

6
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with λ̂ ˆ̄γ = (λ − iδ−u)(γ − iδ−v̄), and likewise the factor in the third line of (26), we can use
the following orthogonality relation:

1

π

∫
d2p e−|p|2pkp̄l = δklk!. (29)

Applying this first to the integrations over variables p and q, and then to w and z we can reduce
the four sums to two. As a final step we employ the following complex integral representation
for Laguerre polynomials:

1

π

∫
d2u e−|u|2(λ + iu)k(λ + iū)k+ν = k!(−)kλνLν

k(λ
2). (30)

Whilst we did not find this representation in tables it can be easily verified from the standard
representation of generalized Laguerre polynomials

Lν
k(x) =

k∑
m=0

(k + ν)!

(k − m)!(m + ν)!m!
xm. (31)

Using the integral representation equation (30) as well as its complex conjugate we finally
arrive at the following result:

F ch
N (λ, γ ;μ) = N !(N + ν)!δ4N

+ (λγ )ν
N∑

l=0

(
δ−
δ+

)4l l∑
k=0

k!

(k + ν)!
Lν

k

(
λ2

δ2−

)
Lν

k

(
γ 2

δ2−

)
. (32)

It is a polynomial in λ and γ with the correct leading power (λγ )2N+ν . Looking back to the
definition of the antisymmetric kernel in our chiral case, equation (10), we can read off the
following result, after using the Christoffel–Darboux formula for Laguerre polynomials:

Kch,1
N (λ, γ ;μ) = N !(N + ν)!δ4N

+ (λγ )ν

×
N∑

l=0

(
δ−
δ+

)4l
(l + 1)!

(l + ν)!
δ2
−

(
Lν

l+1

(
γ

δ2−

)
Lν

l

(
λ

δ2−

)
− (γ ↔ λ)

)
. (33)

This gives our new kernel of the chiral real Ginibre ensemble, from which all its complex
eigenvalue correlations follow. In particular for γ = λ̄ it is proportional to a new complex
eigenvalue density as in equation (3). It is similar to the corresponding expressions for the
kernel at β = 2 [22] and β = 4 [23], also given in terms of Laguerre polynomials in the
complex plane.

After dealing with the general case we can go to maximal asymmetry, by setting μ = 1.
In this limit only the leading power of the Laguerre polynomials contributes, and we obtain

F ch
N (λ, γ ;μ = 1) = N !(N + ν)!

(
2

n

)4N

(λγ )ν
N∑

k=0

1

k!(k + ν)!

(
n2λγ

4

)2k

(34)

for the characteristic polynomials, with limμ→1 δ2
+ = 2

n
. For the corresponding kernel we have

to properly rescale with δ2
− and we obtain

lim
μ→1

δ2
−K

ch,1
N (λ, γ ;μ) = N !(N + ν)!

(
2

n

)4N

(λγ )ν(λ2 − γ 2)

N∑
l=0

1

l!(l + ν)!

(
n2λγ

4

)2l

. (35)

When setting γ = λ̄ and comparing to equation (17) we again find a dependence on the
modulus only, despite the anisotropic jpdf. Here the incomplete exponential is replaced by an
incomplete modified I-Bessel function of the first kind.

7
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5. Conclusions

We have calculated the expectation value of the product of two characteristic polynomials
with respect to the following two Gaussian random matrix models: the partly symmetric real
Ginibre ensemble, and its chiral counterpart, a newly introduced two-matrix model. In our
calculation we have used the supersymmetric method, without the need to explicitly go to an
eigenvalue basis. In this simple way we can determine a skew-symmetric kernel which is the
main building block for all complex eigenvalue correlation functions that can be written as
Pfaffians. One could calculate this kernel directly from the joint eigenvalue distribution (jpdf),
but this turns out to be a very difficult task.

This kernel is given by a sum over Hermite polynomials for the real Ginibre case,
depending on the asymmetry parameter. Here we have recovered a known, very recent
result. In the chiral real Ginibre ensemble we find a new kernel given in terms of generalized
Laguerre polynomials. In addition to the asymmetry μ it depends on the parameter ν labelling
the number of exact zero eigenvalues. Our method offers an explanation of why the spectral
density of complex eigenvalues is so simple, i.e. being an incomplete exponential or I-Bessel
function at maximal asymmetry, while the jpdf is so complicated.

One possible application of our new chiral result would be in field theory for Dirac
operators with a real representation. The reason complex eigenvalues appear here is due to a
chemical potential μ of the quarks.

It is an open question for the chiral ensemble if for all N the kernel also determines the
weight function f (λ), and if both ingredients (i.e. kernel and weight) determine all correlation
functions of real, complex and mixed eigenvalues. For the real Ginibre ensemble this fact is
known to hold, and the similarity in structure makes this very suggestive.

Acknowledgments

H-JS acknowledges discussions with D Savin as well as the kind hospitality at Brunel
University with thanks. This work has been supported by EPSRC grant EP/D031613/1,
European Network ENRAGE MRTN-CT-2004-005616 (GA), an EPSRC doctoral training
grant (MJP) and the SFB/TR12 of the Deutsche Forschungsgemeinschaft (H-JS).

References

[1] Ginibre J 1965 J. Math. Phys. 6 440
[2] Sompolinsky H, Crisanti A and Sommers H-J 1988 Phys. Rev. Lett. 61 259
[3] Efetov K B 1997 Phys. Rev. Lett. 79 491 (arXiv:cond-mat/9702091)
[4] Halasz M A, Osborn J C and Verbaarschot J J M 1997 Phys. Rev. D 56 7059 (arXiv:hep-lat/9704007)
[5] Kwapien J, Drozdz S, Gorski A Z and Oswiecimka F 2006 Acta Phys. Pol. B 37 3039
[6] Bruzda W, Cappelini V, Sommers H-J and _Zyczkowski k arXiv:0804.2361 [quant-ph]
[7] Sommers H-J, Crisanti A, Sompolinsky H and Stein Y 1988 Phys. Rev. Lett. 60 1895
[8] Edelman A, Kostlan E and Shub M 1994 J. Am. Math. Soc. 7 247
[9] Lehmann N and Sommers H-J 1991 Phys. Rev. Lett. 67 941

[10] Edelman A 1997 J. Multivariate Anal. 60 203
[11] Kanzieper E and Akemann G 2005 Phys. Rev. Lett. 95 230201 (arXiv:math-ph/0507058)
[12] Sinclair C D 2007 Int. Math. Res. Not. 2007 rnm015 (arXiv:math-ph/0605006)
[13] Akemann G and Kanzieper E 2007 J. Stat. Phys. 129 1159 (arXiv:math-ph/0703019)
[14] Sommers H-J 2007 J. Phys. A: Math. Theor. 40 F671 (arXiv:0706.1671)
[15] Forrester P J and Nagao T 2007 Phys. Rev. Lett. 99 050603 (arXiv:0706.2020) [cond-mat.stat-mech]
[16] Borodin A and Sinclair C D 2007 arXiv:0706.2670v2 [math-ph]

Borodin A and Sinclair C D 2008 arXiv:0805.2986 [math-ph]
[17] Forrester P J and Nagao T 2008 J. Phys. A: Math. Theor. 41 375003 (arXiv:0806.0055) [math-ph]

8

http://dx.doi.org/10.1063/1.1704292
http://dx.doi.org/10.1103/PhysRevLett.61.259
http://dx.doi.org/10.1103/PhysRevLett.79.491
http://www.arxiv.org/abs/cond-mat/9702091
http://dx.doi.org/10.1103/PhysRevD.56.7059
http://www.arxiv.org/abs/hep-lat/9704007
http://th-www.if.uj.edu.pl/acta/vol37/abs/v37p3039.thm
http://www.arxiv.org/abs/0804.2361
http://dx.doi.org/10.1103/PhysRevLett.60.1895
http://dx.doi.org/10.2307/2152729
http://dx.doi.org/10.1103/PhysRevLett.67.941
http://dx.doi.org/10.1006/jmva.1996.1653
http://dx.doi.org/10.1103/PhysRevLett.95.230201
http://www.arxiv.org/abs/math-ph/0507058
http://www.arxiv.org/abs/math-ph/0605006
http://dx.doi.org/10.1007/s10955-007-9381-2
http://www.arxiv.org/abs/math-ph/0703019
http://dx.doi.org/10.1088/1751-8113/40/29/F03
http://www.arxiv.org/abs/0706.1671
http://dx.doi.org/10.1103/PhysRevLett.99.050603
http://www.arxiv.org/abs/0706.2020
http://www.arxiv.org/abs/0706.2670
http://www.arxiv.org/abs/0805.2986
http://dx.doi.org/10.1088/1751-8113/41/37/375003
http://www.arxiv.org/abs/0806.0055


J. Phys. A: Math. Theor. 42 (2009) 012001 Fast Track Communication

[18] Sommers H-J and Wieczorek W 2008 J. Phys. A: Math. Theor. 41 405003 (arXiv:0806.2756) [cond-mat.stat-
mech]

[19] Forrester P J and Mays A 2008 arXiv:0809.5116 [math-ph]
[20] Akemann G and Basile F 2007 Nucl. Phys. B 766 150 (arXiv:math-ph/0606060)
[21] Akemann G and Vernizzi G 2003 Nucl. Phys. B 660 532 (arXiv:hep-th/0212051)
[22] Osborn J C 2004 Phys. Rev. Lett. 93 222001 (arXiv:hep-th/0403131)
[23] Akemann G 2005 Nucl. Phys. B 730 253 (arXiv:hep-th/0507156)
[24] Magnea U 2008 J. Phys. A: Math. Theor. 41 045203 (arXiv:0707.0418v2 [math-ph])
[25] Fyodorov Y V, Khoruzhenko B A and Sommers H-J 1998 Ann. Inst. Henri Poincaré 68 449
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